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We use previous results from discrete element simulations of simple shear flows of
rigid, identical spheres in the collisional regime to show that the volume fraction-
dependence of the stresses is singular at the shear rigidity. Here, we identify the shear
rigidity, which is a decreasing function of the interparticle friction, as the maximum
volume fraction beyond which a random collisional assembly of grains cannot be
sheared without developing force chains that span the entire domain. In the frame-
work of extended kinetic theory, i.e., kinetic theory that accounts for the decreasing in
the collisional dissipation due to the breaking of molecular chaos at volume fractions
larger than 0.49, we also show that the volume fraction-dependence of the correlation
length (measure of the velocity correlation) is singular at random close packing,
independent of the interparticle friction. The difference in the singularities ensures
that the ratio of the shear stress to the pressure at shear rigidity is different from zero
even in the case of frictionless spheres: we identify that with the yield stress ratio
of granular materials, and we show that the theoretical predictions, once the different
singularities are inserted into the functions of extended kinetic theory, are in excellent
agreement with the results of numerical simulations. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4905461]

I. INTRODUCTION

One of the most striking macroscopic features of granular materials is the existence of an
asymptotic value of the ratio of the shear stress to the pressure at vanishing motion (and large
volume fraction), often identified as the yield stress ratio, µs, which discriminates between fluid-like
and solid-like behaviour. In many models of dense granular flows,1–3 the value of µs is treated as a
parameter and obtained on the basis of fitting with experiments and/or simulations. Using molecular
dynamics simulations on simple shear flows of identical spheres, it has been shown4 that µs depends
on the interparticle friction coefficient µ, and that, due to geometric effects, it is different from zero
even in the case of frictionless particles.5

Here, we use extended kinetic theory,3,6–10 i.e., kinetic theory of granular gases that takes into
account the breaking of molecular chaos at volume fractions ν larger than the freezing point 0.49,11

to describe the simple shear flow (Fig. 1) of identical, rigid spheres at volume fractions less than
the shear rigidity value νs, i.e., the largest volume fraction at which a randomly collisional granular
material can be sheared without force chains spanning the entire domain: when this happens, the
stresses become rate-independent (quasi-static regime). Hence, our νs coincides with the critical
volume fraction measured by Chialvo, Sun, and Sundaresan4 in their simulations, which is only a
function of µ (Fig. 2). For frictionless spheres, νs is equal to 0.636.

If, as we believe, extended kinetic theory is all we need to quantitatively predict granular
shear flows at volume fractions less than νs (in the collisional regime, where collisions can be in
general either sticking or sliding12), and if there is a continuous transition from the rate-dependent
(collisional) to the rate-independent (quasi-static) regime for increasing volume fraction, we should
be able to theoretically predict µs, as the value of the stress ratio at ν = νs.
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FIG. 1. Simple shear flow configuration.

II. THEORY

Without loss of generality, we take the particle density and diameter to be one. We employ the
constitutive relations proposed by Garzó and Dufty,13 as modified by Jenkins and Berzi,8 to express
the pressure

p = f1T, (1)

the shear stress

s = f2T1/2γ̇, (2)

and the rate of energy dissipation in collisions,

Γ =
f3

L
T3/2. (3)

Here, T is the granular temperature (one third of the mean square of the particle velocity fluctua-
tions) and γ̇ is the shear rate. The dissipation rate is present in the fluctuation energy balance which,
for simple shearing, reduces to

sγ̇ = Γ, (4)

i.e., the fluctuation energy produced by the shear stress is entirely dissipated in collisions.
The functions f1, f2, and f3, in the dense limit, i.e., for volume fractions larger than say 0.4,

when the streaming component of the stresses is negligible, are derived from those reported in
Jenkins and Berzi8 and summarized in Table I. All of them are proportional to G, the product of ν

FIG. 2. Numerical (symbols) values of νs against µ obtained from Chialvo, Sun, and Sundaresan.4 The data can be fitted
with the expression νs = 0.58 + (0.636 − 0.58) exp(−4.5µ) (solid line).
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TABLE I. Functions of extended kinetic theory in the dense limit.

f1 = 2(1 + en)νG

f2 =
8J

5π1/2νG

f3 =
12
π1/2νG(1 − e2)

G = νg0

J = 1+en
2 + π

4
(3en−1)(1+en)2

[24−(1−en)(11−en)]
e = en − 3

2 µ exp (−3µ)
g0 = f 2−ν

2(1−ν)3 + (1 − f) 2
νs−ν

f =



1 if ν < 0.4,

ν2 − 0.8ν + νs (0.8 − νs)
0.8νs − 0.16 − ν2

s

otherwise,

L∗ =
(
f2
f3

)1/2


26(1−e)
15

(
ν−0.49
νrcp−ν

)
+ 1

3/2

and the radial distribution function at contact g0. For the latter, we adopt the expression suggested
by Vescovi et al.,14 which has been tested against numerical simulations of frictionless spheres.
The functions f1 and f2 depend also on the normal coefficient of restitution en, i.e., the negative of
the ratio of post- to pre-collisional normal relative velocity between two impending spheres. As in
Ref. 12, we treat the possibility of linear momentum being transferred to angular momentum for
frictional particles as an additional dissipation of fluctuation energy, using an effective coefficient
of restitution e, which depends on the coefficient of normal restitution, the coefficient of tangen-
tial restitution in a sticking collision et, and the interparticle friction µ in the function f3 of the
dissipation rate.15 When et = 1, Chialvo and Sundaresan15 suggest the expression of Table I.

Figs. 3 and 4 depict the functions f1 = p/T and f2 = s/
�
T1/2γ̇

�
calculated from the numerical

values of stresses, granular temperature, and shear rate reported in Refs. 15 and 16 for en = 0.7
and et = 1 at different values of the interparticle friction. The latter has a strong influence on the
value of volume fraction at which the functions f1 and f2 diverge. Interestingly, the singularity is the
same for both functions and coincides with the values of νs reported in Fig. 2. Indeed, the lines in
Figs. 3 and 4, which notably reproduce the data, represent the expressions of Table I when the radial
distribution function at contact has the form proposed by Vescovi et al.14 for frictionless spheres,

FIG. 3. Numerical (symbols, after Mitarai and Nakanishi16 and Chialvo and Sundaresan15) and theoretical (lines) ratio of
pressure to granular temperature (function f1) as a function of the volume fraction for en = 0.7, et = 1, and different values
of the interparticle friction.
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FIG. 4. Same as in Fig. 2, but for the ratio of shear stress to the product of shear rate and square root of granular temperature
(function f2).

where νs is used instead of 0.636 (Table I). The volume fraction at shear rigidity is therefore the
volume fraction at which the radial distribution function at contact diverges in shearing flows, and
the functions f1, f2, and f3 of kinetic theory are singular. More refined interpretations of this singu-
larity must take into account the anisotropy in the pair distribution of contacting spheres induced by
the shearing.

The quantity L in Eq. (3) is the correlation length of extended kinetic theory, accounting for the
decrease in the collisional energy dissipation due to the presence of correlated motion among the
particles (breaking of molecular chaos), which occurs when ν > 0.49.6,7,10,16,17 Its expression comes
from an heuristic balance6 between the shearing that tends to build correlation and the agitation of
the particles that tends to destroy the correlation, and, for plane shear flows, reads

L = max
(
1,L∗

γ̇

T1/2

)
, (5)

where L∗ is a function of the volume fraction and the effective coefficient of restitution (for consis-
tency, given that the correlation length appears in the constitutive expression of the dissipation
rate). Berzi10 has suggested an expression for L∗ on the basis of previous results of event-driven
simulations of simple shear flows of frictionless spheres;16 a simplified version of it is reported
in Table I, with νrcp = 0.64 the volume fraction at random close packing.11 When L is equal to
one diameter (for ν ≤ 0.49), the molecular chaos assumption is valid and extended kinetic theory
reduces to classic kinetic theory. From Eqs. (2)–(5) and Table I, when ν > 0.49,

γ̇

T1/2 =



15
�
1 − e2�

2J
1
L∗



1/3

. (6)

Equation (6) and the expressions of Table I can then be employed to determine the ratio of the shear
stress to the pressure

s
p
=

4J
5π1/2(1 + en)



15
�
1 − e2�

2J



1/3
1

L∗1/3 . (7)

Equation (7) shows that the stress ratio can be different from zero at ν = νs only if the function L∗ is
not singular there. From Eqs. (5) and (6), we also obtain that, in simple shear flows,

L =


15
�
1 − e2�

2J



1/3

L∗2/3, (8)
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FIG. 5. Numerical (symbols, after Mitarai and Nakanishi16 and Chialvo and Sundaresan15) and theoretical (lines) correlation
length as a function of the volume fraction for en = 0.7, et = 1, and different values of the interparticle friction.

i.e., that the correlation length has the same singularity of L∗. The correlation length can be calcu-
lated indirectly as L = f3T3/2/ (sγ̇), using Eqs. (3) and (4), from measurements of shear stress,
granular temperature, shear rate, and volume fraction in numerical simulations, assuming that the
functions f3 and g0 are those of Table I. The comparison between the values of L obtained from
the numerical simulations of Refs. 15 and 16, and Eq. (8) shows a good agreement (Fig. 5). It also
confirms that the singularity in L, and consequently in L∗, does not depend on the interparticle
friction, suggesting that the anisotropy induced by the shearing does not play a significant role in the
velocity correlation.

Being νrcp (the singularity of L∗) always greater than νs (the singularity in the radial distribution
function at contact) for every µ, the stress ratio at ν = νs is always different from zero. We can
obtain µs from Eq. (7), with L∗ calculated from the expression of Table I at ν = νs. We compare the
theoretical values of the yield stress ratio µs against the data measured in numerical simulations4

in Fig. 6. Once again, the agreement is remarkable. It is worthwhile to emphasize that the tiny
difference between νrcp and 0.636, ignored in Ref. 14, is enough to correctly predict the non-zero
value of µs even in the case of frictionless spheres.5

FIG. 6. Numerical (symbols, after Chialvo, Sun, and Sundaresan4) and theoretical (lines) yield stress ratio as a function of
the interparticle friction.
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FIG. 7. Numerical (symbols, after Refs. 4, 5, 15, and 16) and theoretical (lines) stress ratio as a function of the inertial
parameter for different values of the interparticle friction.

Equation (7) indicates that, in simple shear flows, the stress ratio is a unique function of the
volume fraction. If we divide both sides of Eq. (6) by f 1/2

1 , we obtain

γ̇

p1/2 =
1

f 1/2
1



15
�
1 − e2�

2J
1
L∗



1/3

, (9)

where the term on the left hand side is the inertial parameter I.1 Equation (9) indicates that, in
simple shear flows, also the inertial parameter is a unique function of the volume fraction. Obvi-
ously, Eqs. (7) and (9) can be formally rewritten to obtain the stress ratio and the volume fraction
as unique functions of the inertial parameter. This is often referred to as the GDR MiDi rheology,
that here has been obtained as a special case of the more general extended kinetic theory. Such
a description is not valid if the fluctuation energy balance does not reduce to production equal to
dissipation (Eq. (4)): for instance, when energy diffusion is important (close to solid boundaries18).
A modification of the GDR MiDi approach, with the inclusion of a diffusive-like term, to take care
of non-locality has been recently proposed.19 Energy diffusion is naturally included in the context

FIG. 8. Same as in Fig. 7, but for the volume fraction as a function of the inertial parameter.
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of kinetic theory, so that there is no need for such ad hoc modifications. Figs. 7 and 8 show that
extended kinetic theory notably reproduces the results of numerical simulations on simple shear
flows,4,5,15,16 even in the case of frictional spheres for ν ≤ νs, if the different singularities in the
radial distribution function at contact and L∗ are taken into account.

In the more general situation in which the fluctuation energy production is not equal to the
energy dissipation, the stress ratio results, when ν > 0.49,

s
p
=

4J
5π1/2(1 + en)

L
L∗

. (10)

Equation (10) shows that even at ν = νs, the stress ratio can be less than µs if the correlation
length decreases. The fact that the correlation length decreases with increasing granular temperature
(that destroys the correlation) gives a hint on how agitation can induce the vanishing of the yield
stress, as observed in recent experiments.20,21 Of course, extended kinetic theory must be completed
by including the role of force chains22 to deal also with the quasi-static regime (ν > νs), before
claiming to have a comprehensive model for granular flows.

III. CONCLUSIONS

We have shown that the yield stress ratio in granular materials can be theoretically predicted
in the context of extended kinetic theory once the different singularities of the radial distribution
function at contact in shearing flows and the volume fraction-dependence of the correlation length
are accounted for. This allows extend kinetic theory to be in excellent agreement with the results
of numerical simulations on simple shearing of inelastic, frictional, and frictionless particles for
volume fractions less than the value at shear rigidity. Although it is intriguing to have a consistent
theoretical framework to predict the macroscopic yield stress of granular materials, the micro-
scopic origin of the different singularities, and of the relation between the shear rigidity and the
interparticle friction, is still lacking and deserves future work.
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